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THE STRUCTURE OF THE CONTROLLABILITY SET
OF A LINEAR SUBCRITICAL SYSTEM

S. F. Nikolaev and E. L. Tonkov UDC 517.977

Introduction
In the present paper we continue the research started in [1 – 3] and investigate the structure of the con-

trollability set of the linear nonstationary system

ẋ = A(t)x + b(t)u, x ∈ Rn, |u| ≤ 1, (1)

provided that the dual system ψ̇ = −ψA(t) has the nonoscillation property with respect to the hyperplane
determined by the normal vector b(t). Such systems are said to be subcritical [3]. This notion was intro-
duced in the 50s by Azbelev in papers dealing with boundary value problems and differential inequalities:
the maximal solvability interval of a fixed class of de la Vallée–Poussin problems was called subcritical in these
papers. It turns out that the problem on the existence of a time-optimal positional control for system (1) is
closely related to the solvability of some class of n-point problems (which, however, is not dealt with in the
present paper); that is why we have borrowed the term.

In the following, we show that if a system is subcritical, then the boundary of its controllability set is a
union of disjoint smooth manifolds [the smoothness is higher by 1 than that of the function t → (A(t), b(t))]
whose dimensions diminish from n− 1 to 0; moreover, the union of manifolds whose dimensions grow from 0
to k − 1 is the common boundary of the union of manifolds whose dimensions diminish from n − 1 to k.
The described structure of the boundary is naturally referred to as the Polya–Mammana factorization, since
(as was mentioned above) the intrinsic causes of such a structure are related to the representation of an
nth-order subcritical differential operator as the product of first-order differential operators.

Next, it turns out that the controllability set of a subcritical system also admits the Pola–Mammana
factorization in the extended phase space [the space of (t, x)-variables]: it can be represented as a union of
weakly invariant smooth manifolds whose dimensions diminish from n + 1 to 1; moreover, the manifold of
dimension k is the boundary of the closure of the manifold of dimension k + 1.

Such a structure allows one to have a well-defined time-optimal positional control. Moreover, it suffices to
specify the positional control only on the manifold of maximal dimension, since the motions (t, x(t)) (in the
Filippov sense) of a system with right-hand side discontinuous in the phase coordinates are independent of
the definition of the right-hand side on sets of zero Lebesgue measure in the extended phase space. Therefore,
the existence of a Polya–Mammana factorization results in the existence of a time-optimal positional control.

1. Notation and Definitions
In the present paper we use the following notation: Rn is an n-dimensional Euclidean space with norm

|x| =
√

x∗x (∗ stands for the transposition). Vector columns are denoted by Latin letters and vector rows are
denoted by Greek letters unless otherwise specified (therefore, ξx stands for the inner product of the vectors ξ
and x); End (Rn) is the space of linear self-mappings of Rn equipped with the norm |A| = max{|Ax| : |x| ≤ 1}.

Let D be an arbitrary set in Rn. We denote the interior of D with respect to Rn by intD and the
closure of D in Rn by cl D. The support function ξ → c(ξ,D) of the set D is given by the formula c(ξ, D) =
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sup{ξx : x ∈ D}. For the properties of the support function, see [4]. For our investigation it is important
that the inclusion 0 ∈ int D is equivalent to the validity of the inequality c(ξ,D) > 0 for all ξ ∈ Sn−1 .=
{ξ ∈ Rn : |ξ| = 1}.

Recall [5] that a mapping f of M into N , where M and N are Cr-manifolds, r ≥ 1, embedded in
finite-dimensional spaces belongs to the class Ck, k ≤ r, at a point p ∈ M if for any k times continuously
differentiable curve p : (−1, 1) → M passing through the point p [p(0) = p], the function ε → f(p(ε)), mapping
(−1, 1) into N , belongs to the class Ck at the point ε = 0. Next, the mapping df(p) : TpM → TqN , where
TpM is the space tangent to M at the point p and TqN is the space tangent to N at the point q = f(p), defined
by df(p)v = df(p(ε))/dε|ε=0 for any Ck-curve p : (−1, 1) → M [p(0) = p, dp(ε)/dε|ε=0 = v ∈ TpM ] is referred
to as the derivative of the mapping f at the point p. A mapping f : M → N is called a Ck-diffeomorphism
if it belongs to the class Ck and its inverse belongs to the same class. If f : M → N is a mapping of the
class Ck and df(p) is an isomorphism for each p ∈ M , then f is a diffeomorphism of the class Ck.

Everywhere in the following we assume that the functions A : R → End (Rn) and b : R → Rn determining
system (1) are continuous.

The optimal time function (t, x) → τn(t, x) of system (1) is defined as the function whose value at each
point (t0, x0) is given by the relation τn (t0, x0) = minu(·)∈U{ϑ ≥ 0 : x (t0 + ϑ, t0, x0, u(·)) = 0}, where U is
the set of measurable functions with range [−1, 1], and x (t, t0, x0, u(·)) is the solution of system (1) with the
control u = u(t) and the initial condition x (t0) = x0. If for some point (t0, x0) there is no admissible control
bringing the solution to zero in finite time, then we set τn (t0, x0) = ∞.

The controllability set of system (1) on the closed interval [t0, t0 + ϑ] is defined as

Dϑ (t0) = {x ∈ Rn : τn (t0, x) ≤ ϑ} .

For Dϑ (t0) we have the relation (e.g., see [6, p. 103])

Dϑ (t0) =: −
t0+ϑ
∫

t0

X (t0, t) b(t)U dt, (2)

where U = [−1, 1], X(t, s) is the Cauchy matrix of the system ẋ = A(t)x and the integral is treated in the
Lyapunov sense [7, p. 229].

System (1) is said to be differentially controllable at a point t0 if 0 ∈ int Dϑ (t0) for all ϑ > 0 and
differentially controllable on an interval J ⊂ R if it is so at each point of this interval. It was shown in
[6, Lemma 1 and Theorem 2] that if system (1) is differentially controllable on J , then for any t0 ∈ J the
controllability set D (t0)

.=
⋃

ϑ≥0 Dϑ (t0) is open in Rn and the optimal time function is continuous at each
point (t0, x0) ∈ J ×D (t0).

A set N in the extended phase space R1+n of system (1) is said to be weakly invariant if for any point
(t0, x0) ∈ N there exists a control u0 ∈ U such that the solution x0(t) of system (1) with u = u0(t) and the
initial condition x0 (t0) = x0 satisfies the inclusion (t, x0(t)) ∈ N for all t ≥ t0. In particular, the extended
controllability set D .= R×Dσ(t)(t) is weakly invariant [for any function σ(t) satisfying the inequality σ(t) > 0
for all t ∈ R].

2. The Subcritical Property and Nonoscillation
Let ψ1(t), . . . , ψn(t) be an arbitrary principal solution system of the dual equation

ψ̇ = −ψA(t). (3)

By σ (t0) we denote the least upper bound of σ > 0 such that the system of functions

ξ1(t)
.= ψ1(t)b(t), . . . , ξn(t) .= ψn(t)b(t) (4)

is a Chebyshev system (a T -system) on the half-open interval [t0, t0 + σ). This means that any nontrivial
linear combination of the functions (4) has at most n− 1 geometrically (i.e., with no regard of multiplicities)
distinct zeros on [t0, t0 + σ). It follows from the definition of σ (t0) that for any ϑ ∈ [0, σ (t0)] each nontrivial
solution of system (3) intersects the hyperplane γ(t) .= {ψ ∈ Rn : ψb(t) = 0} at most n− 1 times as t ranges
over the interval [t0, t0 + ϑ). This property was termed in [1] the nonoscillation of system (3) on the interval
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[t0, t0 + ϑ) with respect to the hyperplane γ(t). Simple examples show that the function t → σ(t) (either
taking nonnegative finite values or equal to +∞) can be discontinuous, but the inequality σ (t0 − 0) ≤ σ (t0) ≤
σ (t0 + 0) is always valid. Note that the set (4) is a T -system on [t0, t0 + ϑ) if and only if the determinant
det (ξi (tj))

n
i,j=1 is nonzero [8, p. 51] for any set of points t1, . . . , tn such that t0 ≤ t1 < t2 < · · · < tn < t0 + ϑ.

The main property of T -systems required for our further considerations is known as the Bernstein the-
orem [8, p. 53]: if the set (4) is a T -system on [t0, t0 + ϑ), then for any set of points t1, . . . , tn−1 such that
t0 ≤ t1 < t2 < · · · < tn−1 < t0 + ϑ there exists a linear combination of functions (4) which has simple zeros at
the points ti and does not have any other zero on [t0, t0 + ϑ).

Definition. System (1) is said to be subcritical on the interval J if σ(t) > 0 for all t ∈ J .

Lemma. If system (1) is subcritical on J , then it is differentially controllable for all t ∈ J .

Indeed, for each t0 ∈ J and any ϑ ∈ (0, σ (t0)) the support function ψ → c (ψ,Dϑ (t0)) of the set Dϑ (t0) is

given by the relation
t0+ϑ
∫

t0
|ξ(t)|dt, where ξ(t) = ψ(t)b(t) and ψ(t) is the solution of system (3) with ψ (t0) = −ψ.

Therefore, minψ {c (ψ,Dϑ (t0)) : ψ ∈ Sn−1} > 0, which completes the proof of the theorem.

Theorem 1. A system of the form (1) is subcritical if it can be reduced by a nondegenerate transformation
z(t) = L(t)x [where L(t) is continuously differentiable and det L(t) 6= 0, t ∈ J ] to the canonical system

ż = F (t)z + g(t)u. (5)

Here F (t) = {fij(t)}n
i,j=1, fij(t) = 0 for i > j + 1, is an upper triangular matrix with nonzero secondary

diagonal consisting of the entries fi+1,i(t) = −βi+1(t), i = 1, . . . , n − 1, g(t) = colon
(

β1(t), 0, . . . , 0
)

∈ R;
moreover, fik(t) and βi(t) are continuous functions, and βi(t) > 0 for t ∈ J and i = 1, . . . , n.

Proof. By σ(t; A, b) we denote the function σ(t) constructed on the basis of system (1). Let us show that
σ(t; A, b) is invariant under the nondegenerate transformation z = L(t)x [i.e., σ(t; A, b) = σ(t; F, g), where
F =

(

L̇ + LA
)

L−1 and g = Lb]. Indeed, the solution of system (3) and that of the system

η̇ = −ηF (t), (6)

dual to the system ż = F (t)z, are related by the formula ψ(t) = η(t)L(t); therefore [see (4)], ξi(t) = ψi(t)b(t) =
ηi(t)L(t)b(t) = ηi(t)g(t).

Suppose that F and g are taken from system (5); let us show that σ(t; F, g) > 0 for all t ∈ J . Note
that, first, the condition β1(t) > 0 yields the relation σ(t; F, g) = σ (t; F, e1), where e1 = colon(1, 0, . . . , 0);
therefore, in the following we assume that g = e1. Second, we can assume that all functions occurring on the

main diagonal of the matrix F vanish. Indeed, the nondegenerate transformation ξ(i) = η(i) exp
t
∫

0
fii(s)ds,

i = 1, . . . , n (the bracketed superscript stands for the corresponding coordinate of the vector), reduces sys-
tem (6) to the form ξ̇ = −ξF 0(t), where the main diagonal of the matrix F 0 consists of zero entries.

For each k = 3, . . . , n we introduce the matrices Uk(t) = (m(t), e2, . . . , ek)
∗ ∈ End (Rn), where m(t) =

colon
(

µ(1)(t), . . . , µ(k)(t)
)

, and Fk−1(t) = {qij(t)}k−1
i,j=1 ∈ End

(

Rk−1
)

, where qij(t) = 0 for i > j + 1 and i = j,
whereas qi+1,i(t) = −βn−k+i+2(t).

Let µ(t) be the solution of system (6) with the initial condition µ (t0) = e1, t0 ∈ J , and let ε1 be a
number such that µ(1)(t) > 0 for all t ∈ J1

.= [t0, t0 + ε1]. On J1 we perform the nondegenerate transformation
η = ξUn(t); then η(1) = µ(1)(t)ξ(1), η(i) = µ(i)(t)ξ(1) + ξ(i), i = 2, . . . , n, and system (6) for ξ acquires the form

ξ̇(1) = ξ(2)β2(t)/µ(1)(t), η̇1 = −η1Fn−1(t), η1 =
(

ξ(2), . . . , ξ(n)) ∈ Rn−1 (7)

[the transformation η = ξUn(t) does not guarantee that the matrix Fn−1(t) has the zero diagonal, but, as was
mentioned above, this diagonal can be reduced to zero].

The performed transformation has the following property. If system (6) has a nontrivial solution η(t) such
that the first coordinate η(1)(t) vanishes at least n times on some interval [t0, t0 + δ), δ ≤ ε, then, by virtue
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of (7), there exists a nontrivial solution η1(t) of the system η̇1 = −η1Fn−1(t) such that the first coordinate of
this solution has at least n− 1 zeros on [t0, t0 + δ).

Continuing the reduction to the canonical form, on the basis of the system η̇1 = −η1Fn−1(t) and the
solution µ1(t) of this system satisfying the condition µ1 (t0) = (1, 0, . . . , 0) ∈ Rn−1 we construct the new
system η̇2 = −η2Fn−2(t), η2 ∈ Rn−2, on the closed interval J2

.= [t0, t0 + ε2] on which the inequality µ(1)
1 (t) > 0

is valid. This system has the following property: if system (6) has a solution whose first coordinate has at
most n zeros on [t0, t0 + δ), δ ≤ min {ε1, ε2}, then the system η̇2 = −η2Fn−2(t) has a solution whose first
coordinate vanishes at least n− 2 times on [t0, t0 + δ).

At the last step, the canonical system becomes the equation η̇ = 0, whose arbitrary nontrivial solution
has no zeros. The proof of the theorem is complete.

Suppose that system (1) satisfies the following two conditions.
Condition 1. For each i = 1, . . . , n + 1 the functions t → qi(t) given by the formulas q1(t) = b(t), . . . ,

qi(t) = q̇i−1(t) − A(t)qi−1(t) are continuous and bounded on R and satisfy the relation detQ(t) 6= 0 for all
t ∈ R, where Q(t) = (q1(t), . . . , qn(t)).

Condition 2. There exist numbers ν1, . . . , νn−1 such that ν1 ≤ ν2 ≤ · · · ≤ νn−1 and the roots λ1(t), . . . ,
λn(t) of the equation det(λQ(t)−H(t)) = 0, where H(t) = (q2(t), . . . , qn+1(t)), satisfy the inequalities

λ1(t) ≤ ν1 ≤ λ2(t) ≤ · · · ≤ νn−1 ≤ λn(t) (8)

for all t.

Theorem 2. If Conditions 1 and 2 are satisfied, then σ(t) = ∞ for all t ∈ R. Next, if there exist
constants ε > 0 and δ ≥ 0 such that, in addition to (8), δ ≤ λ1(t), νi−1 + ε ≤ λi(t) ≤ νi − ε, i = 2, . . . , n− 1,
for all sufficiently large t, then the controllability set D(t) of system (1) coincides with Rn for all t ∈ R.

Proof. Let r(t) = colon (r1(t), . . . , rn(t)) be a solution of the algebraic system Q(t)r = qn+1(t). Straight-
forward verification shows that the substitution z = L(t)x, L = Q−1, reduces system (1) to system (5), where
βi(t) ≡ 1, fin(t) = −ri(t), i = 1, . . . , n, and fik(t) ≡ 0, i ≤ k, i, k = 1, . . . , n− 1. Hence σ(t) > 0. Further, we
can readily see that system (6) is equivalent to the equation

ξ(n) = r1(t)ξ + · · ·+ rn(t)ξ(n−1). (9)

Let us show that σ(t) = ∞. By virtue of Corollary 5.3 in [9], if there exist numbers ν0, . . . , νn−1 such that
ν0 < ν1 < · · · < νn−1 and the roots µ1(t), . . . , µn(t) of the characteristic equation

µn = r1(t) + r2(t)µ + · · ·+ rn(t)µn−1 (10)

satisfy inequalities (8) (with µi replaced by λi) and the inequality ν0 ≤ µ1(t), then for Eq. (9) we have
σ(t) = ∞ for all t ∈ [0, +∞). Moreover, there exists a principal solution system of Eq. (9) such that
ci exp (νi−1t) ≤ ξi(t) ≤ di exp (νit), i = 1, . . . , n− 1, and cn exp (νn−1t) ≤ ξn(t), t ∈ [0,∞), where ci and di are
some positive constants.

Let us show that µi(t) = λi(t). Indeed, the roots of Eq. (10) are the eigenvalues of the matrix Ĥ(t) .=
(e2, . . . , en, r(t)), where ei is the ith unit vector; therefore, det

(

µ(t)I − Ĥ(t)
)

= 0 for each root µ(t) of

Eq. (10). Consequently, detQ(t)
(

µ(t)I − Ĥ(t)
)

= det
(

µ(t)Q(t) − Q(t)Ĥ(t)
)

. Since Q(t)Ĥ(t) = H(t), we
have det(µ(t)Q(t) −H(t)) = 0. Therefore, any root of Eq. (10) is simultaneously a solution of the equation
det(λQ(t)−H(t)) = 0, whence σ(t) = ∞.

Let us show that D(t) = Rn. Since the function ξ(t) = −ψX (t0, t) b(t) is a solution of Eq. (9), it follows

that the support function c (ψ,Dϑ(t)) of the set Dϑ(t) has the form c (ψ, Dϑ(t)) =
t+ϑ
∫

t
|ξ(s)|ds. By virtue of

the inequality δ ≤ λ1(t), occurring in the assumption of Theorem 2, and the results of [9, Corollary 5.3], there
exists an α > 0 such that |ξ(t)| ≥ α; therefore, c (ψ,Dϑ(t)) →∞ as ϑ →∞ for any ψ 6= 0. The proof of the
theorem is complete.

Example 1. Let us consider the system of equations ẋ1 = a1(t)x1 + a2(t)x3 +u, ẋ2 = x1, ẋ3 = x1 + a3(t)x3

describing (in the linear approximation) the dynamics of an aircraft with variable aerodynamic characteris-
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tics [10]. Here x2 is the pitch angle, x3 is the angle of attack, and u is the elevator application. We can directly
justify that if the ai are independent of t, then the inequality a3 6= 0 is a necessary and sufficient condition for
the system to be subcritical, and the conditions a3 6= 0 and (a1 − a3)

2 +4a2 ≥ 0 provide the global subcritical
property (i.e., the validity of the relation σ = ∞). Now let t → ai(t) be continuous functions, and let a3(t) 6= 0
for all t. In this case, using Theorems 1 and 2, we can show that if for each t there exists a ϑ > 0 such that

−1 ≤ a3(t)

t+ϑ
∫

t

a2(s) exp

s
∫

t

(a3(τ)− a1(τ)) dτ ds ≤ 0,

then the system is subcritical; moreover, σ(t) > ϑ. In particular, if either a3(t) < 0 and a2(t) ≥ 0 or a3(t) > 0
and a2(t) ≤ 0, then σ(t) > 0.

3. The Structure of the Boundary of the Controllability Set
In the following we assume that the functions A : R → End (Rn) and b : R → R determining system (1)

are bounded on R and belong to the class Cr (i.e., are r times continuously differentiable on R), where r ≥ 0,
and system (1) is subcritical.

If ϑ ≤ σ (t0), then, by virtue of the Pontryagin maximum principle

max
u(·)∈U

ψ(t)b(t)u = ψ(t)b(t)u(t), t0 ≤ t ≤ t0 + ϑ, (11)

for any point x0 ∈ Dϑ (t0) there exists an integer k, 0 ≤ k ≤ n − 1, and a vector τ ∈ Mk(ϑ), where
M0(ϑ) .= {0} and Mk(ϑ) .=

{

τ = (τn−k, . . . , τn−1) ∈ Rk : 0 < τn−k < · · · < τn−1 < ϑ
}

, k = 1, . . . , n− 1, such
that the control bringing the solution x0 = x (t0) to the origin in minimum time takes the values +1 and −1
and has switchings only at the points t0 + τi, i = n − k, . . . , n − 1 [the points t0 + τi, i = n − k, . . . , n − 1,
correspond to the zeros of the function ξ(t) .= ψ(t)b(t), where ψ(t) is some nontrivial solution of system (3)].
By virtue of the condition ϑ < σ (t0), there are at most n− 1 switchings. The set M0(ϑ) corresponds to the
points from Dϑ (t0) that are brought to zero by controls without switchings. We treat Mk(ϑ) as embedded
(in Rk) smooth manifolds of dimension k equipped with the natural topology.

For each k = 0, . . . , n− 1 we construct the sets Nk
+ (t0, ϑ) and Nk

− (t0, ϑ) as follows: Nk
+ (t0, ϑ) consists of

all points x0 ∈ Dϑ (t0) for each of which there exists a point τ (t0, x0) ∈ Mk(ϑ) such that the optimal control
u (t, x0), t0 ≤ t ≤ t0 + ϑ, brings the system from the point x (t0) = x0 to the point x (t0 + ϑ) = 0 and has
switchings only at the instants t = t0 + τi (t0, x0), and moreover, u (t, x0) = +1 before the first switching.

In this case, the set N0
+ (t0, ϑ) is a singleton: N0

+ (t0, ϑ) =

{

−
t0+ϑ
∫

t0
X (t0, t) b(t)dt

}

. The sets Nk
− (t0, ϑ) are

defined in a similar way with replacing the control u (t, x0) by −1 for t0 ≤ t < t0 + τn−k (t0, x0). The sets
Nk

+ (t0, ϑ) and Nk
− (t0, ϑ), k = 0, . . . , n− 1, have the following properties.

Property 1. Let ϑ ≤ σ (t0). Then Nk
+ (t0, ϑ) ⊂ ∂Dϑ (t0), and any point x0 ∈ Nk

+ (t0, ϑ) corresponds to a
unique point τ (t0, x0) ∈ Mk(ϑ) (that is, the set of switching points) such that the control u (t, x0) satisfying
the maximum principle (11) brings the system from the point x0 = x (t0) to the point x (t0 + ϑ) = 0.

Proof. Indeed, since Nk
+ (t0, ϑ) ⊂ Dϑ (t0), it follows that the existence of a point x0 ∈ Nk

+ (t0, ϑ) that does
not belong to ∂Dϑ (t0) results in the inclusion x0 ∈ int Dϑ (t0). Therefore, the optimal time τn (t0, x0) satisfies
the inequality τn (t0, x0) < ϑ. The corresponding control u0(t) satisfies condition (11) for some nontrivial
solution ψ0(t) of Eq. (3). On the other hand, it follows from the definition of Nk

+ (t0, ϑ) that there exists a
τ ∈ Mk(ϑ) such that the control u(t, τ) also brings x0 to the origin in time ϑ. We complete the definition
of u0(t) on (t0 + τn (t0, x0) , t0 + ϑ] by identical zero and consider the function v(t) = u(t, τ)− u0(t). We can
readily see that this function preserves the sign on the intervals (t0 + τi, t0 + τi+1), i = n − k − 1, . . . , n − 1,
τn−k−1 = 0, τn = ϑ; moreover, (−1)iv(t) ≥ 0 for t ∈ (t0 + τi, t0 + τi+1). Consequently, the function v(t)
changes its sign at most k times on [t0, t0 + ϑ], i.e., there exist at most k distinct points t1 < t2 < · · · < tk
of the interval (t0, t0 + ϑ) such that v (ti) v (ti+1) < 0. Next, the function y(t) .= x(t)− x0(t) [where x(·) and
x0(·) are solutions of system (1) issuing from the point x0 = x (t0) and corresponding to the controls u(·) and
u0(·)] is a solution of the problem ẏ = A(t)y + b(t)v(t), y (t0) = y (t0 + ϑ) = 0, whence

t0+ϑ
∫

t0

X (t0, t) b(t)v(t)dt = 0. (12)
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Next, by the Bernstein theorem, there exists a vector ψ 6= 0 such that the function ξ(t) = ψX (t0, t) b(t)
has zeros at the points where v(t) changes its sign, and ξ(t)v(t) ≥ 0 for t0 ≤ t ≤ t0 + ϑ < t0 + σ (t0).

Multiplying (12) by ψ, we obtain
t0+ϑ
∫

t0
ξ(t)v(t)dt = 0. Consequently, v(t) ≡ 0, whence u(t, τ) ≡ u0(t) for

t0 ≤ t ≤ t0 + ϑ, which contradicts the assumption τn (t0, x0) < ϑ.
The uniqueness of the control u(t, τ) corresponding to the point x0 ∈ Nk

+ (t0, ϑ) can be proved in a similar
way: if the controls u(t, τ) and u0(t) bring the system from x (t0) = x0 to x (t0 + ϑ) = 0, then we have
relation (12), where v(t) = u(t, τ)− u0(t). The proof of the property is complete.

By virtue of Property 1, for each ϑ ≤ σ (t0) and any fixed k = 0, . . . , n − 1 we have the function
f−1 : Nk

+ (t0, ϑ) → Mk(ϑ), which takes each point x ∈ Nk
+ (t0, ϑ) to the point τ ∈ Mk(ϑ) determining the

switching points of the optimal control u(t, τ). The function f−1 = f−1
k depends on ϑ and the index k, but

we do not emphasize this fact unless necessary.

Property 2. The function f−1 is continuous and defines a homeomorphism of the sets Nk
+ (t0, ϑ) and

Mk(ϑ). The inverse function f : Mk(ϑ) → Nk
+ (t0, ϑ) is given by the formula

f(τ) =
n−1
∑

i=n−k−1

(−1)i−n+k

t0+τi+1
∫

t0+τi

X (t0, t) b(t)dt, (13)

where τn−k−1 = 0 and τn = ϑ.

Proof. Let us show that f−1 is a continuous function. Let {xj}∞1 ⊂ Nk
+ (t0, ϑ) be a sequence such that

xj → x0 ∈ Nk
+ (t0, ϑ). The sequence {xj}∞1 corresponds to the sequence {τj}, τj = f−1 (xj) ∈ Mk(ϑ), and

the point x0 corresponds to the point τ0 = f−1 (x0) ∈ Mk(ϑ). We must show that τj → τ0. From the
sequence {τj}∞1 we extract a convergent subsequence and denote it by {τj}∞1 again. The limit of this sequence
is τ∗ ∈ cl Mk(ϑ). Let the control u (t, τj) correspond to the point xj (i.e., bring the system from xj to the
origin); then

xj = −
t0+ϑ
∫

t0

X (t0, t) b(t)u (t, τj) dt. (14)

The sequence {u (t, τj)}∞1 weakly converges to u (t, τ∗); therefore, by passing to the limit in (14), we obtain

x0 = −
t0+ϑ
∫

t0
X (t0, t) b(t)u (t, τ∗) dt. On the other hand, x0 = −

t0+ϑ
∫

t0
X (t0, t) b(t)u (t, τ0) dt, whence τ∗ = τ0

(see the proof of Property 1). This, together with the convergence xj → x0, yields f−1 (xj) → f−1 (x0). The
proof of (13) is obvious.

Property 3. Let ϑ ≤ σ (t0). The vectors h (τn−k)
.= X (t0, t0 + τn−k) b (t0 + τn−k), . . . , h (τn−1)

.=
X (t0, t0 + τn−1) b (t0 + τn−1) are linearly independent for each k = 1, . . . , n − 1 and for any point τ =
(τn−k, . . . , τn−1) ∈ Mk(ϑ).

Proof. If there exist numbers cn−k, . . . , cn−1 not simultaneously zero and such that h (τn−k) cn−k + · · · +
h (τn−1) cn−1 = 0, then

ξ (τn−k) cn−k + · · ·+ ξ (τn−1) cn−1 = 0 (15)

for any ψ ∈ Rn, where ξ (τi) = ψX (t0, t0 + τi) b (t0 + τi). Let cj 6= 0. There exists a vector ψ 6= 0 such that
the function ξ(t) = ψX (t0, t) b(t) has zeros at the points t0 + τi, i 6= j, and ξ (τj) 6= 0 (this follows from the
nonoscillation and the cited Bernstein theorem). This, together with (15), yields ξ (τj) cj = 0. The proof of
the property is complete.

By virtue of Properties 1 – 3, for any ϑ ≤ σ (t0) and for each k = 1, . . . , n − 1 the set Nk
+ (t0, ϑ) is

a smooth (of the class C1) manifold of dimension k embedded in Rn. In fact, it belongs to the class Cr+1.
Let us prove this fact. The relation f(τ +δτ) = f(τ)+df(τ)δτ +o(|δτ |), where df(τ) = (qn−k(τ), . . . , qn−1(τ)),
qi(τ) = ∂f(τ)/∂τi = −2(−1)i−n+kh (τi), i = n − k, . . . , n − 1, means that the operator df(τ) acts from
the space TτMk tangent to Mk (ϑ) at the point τ (and identified with Rk) into the space TxNk tangent
to Nk

+ (t0, ϑ) at the point x = f(τ) (and modeled by Rk). In addition, df(τ)
(

TτMk
)

= TxNk; therefore, df(τ)
is an isomorphism. Taking into account the conditions imposed on system (1), we can readily see that the
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Fig. 1. Fig. 2.

Fig. 3. Fig. 4.

function τ → df(τ) belongs to the class Cr; consequently, f is a diffeomorphism of the class Cr+1; therefore,
Nk

+ (t0, ϑ) is a manifold of the class Cr+1.

Theorem 3. Let system (1) be subcritical on R. Then for each ϑ ≤ σ (t0) the controllability set Dϑ (t0) is
a strictly convex body in Rn [i.e., int Dϑ (t0) 6= �, and λx+(1−λ)x0 ∈ int Dϑ (t0) for any x, x0 ∈ ∂Dϑ (t0) and
any λ ∈ (0, 1)]. The boundary ∂Dϑ (t0) of the set Dϑ (t0) is the union of disjoint smooth (of the class Cr+1)
manifolds Nk

+ (t0, ϑ) and Nk
− (t0, ϑ), k = 0, 1, . . . , n−1, and the union

(

⋃k−1
i=0 N i

− (t0, ϑ)
)

∪
(

⋃k−1
i=0 N i

+ (t0, ϑ)
)

is the common edge of the manifolds cl Nk
+ (t0, ϑ) and cl Nk

− (t0, ϑ). Next, each point x ∈ Nk
+ (t0, ϑ) corresponds

to a unique control bringing x (t0) = x to x (t0 + ϑ) = 0; moreover, u(t, x) has exactly k switchings on the
interval (t0, t0 + ϑ).

Proof. All assertions of the theorem except for the strict convexity of Dϑ (t0) have already been proved. The
strict convexity follows from the uniqueness of the control u (t, x0) bringing the point x0 = x (t0) ∈ ∂Dϑ (t0)
to zero in time ϑ. Indeed, if there exists a λ ∈ (0, 1) such that xλ = λx1 + (1 − λ)x0 ∈ ∂Dϑ (t0) for some
x0, x1 ∈ ∂Dϑ (t0), then uλ(t) = λu (t, x1) + (1 − λ)u (t, x0) is the unique control bringing the point xλ to the
origin in time ϑ. Therefore, |uλ(t)| = 1 for all t ∈ [t0, ϑ). Consequently, either λ 6∈ (0, 1) or u (t, x0) = u (t, x1),
and therefore, x0 = x1.

Example 2. The controllability set Dϑ (t0) of the system ẋ1 = x2, ẋ2 = x3, ẋ3 = u, |u| ≤ 1, is constructed
in Fig. 1 for ϑ = 3 and t0 = 0. The “upper hat,” that is, the manifold N2

+(0, 3), is shown in Fig. 2.
Example 3. Figures 3 and 4 show the sets Dϑ (t0) and N2

+ (t0, ϑ) for the system described in Example 1
in the case |u| ≤ 1, t0 = 0, ϑ = 2π, a1 = 1, a2 = 0.1 sin t, and a3 = 1 + 0.999 sin t.

4. The Structure of the Extended Controllability Set
We write τn = ϑ, and for each k = 0, 1, . . . , n and any t ∈ R we introduce the manifolds Mk(t), where

M0(t) .= {0}, Mk(t) .= {τ = (τn−k+1, . . . , τn) : 0 < τn−k+1 < · · · < τn < σ(t)}, k = 1, . . . , n, and M1+k =
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R×Mk(t). To each point p = (t, τ) ∈M1+k we assign the point q = (t, x), where x = 0 for k = 0 and

x = x(p) = −
n−1
∑

i=n−k

(−1)i−n+k

t+τi+1
∫

t+τi

X(t, s)b(s)ds, τn−k = 0, (16)

for k ≥ 1.
Therefore, for each k we have the function p → F (p) = q with domainM1+k and range N 1+k

+
.= F

(

M1+k
)

(in the following we omit the subscript of N 1
+). Since N 1+k

+ = R×N k
+(t), where N 0(t) = {0}, and for k ≥ 1

the set N k
+(t) consists of points of the form (16), we have N k

+(t) ⊂ Dσ(t)(t). Therefore, by virtue of the
Pontryagin maximum principle and the condition τn < σ(t), each point q = (t, x) ∈ N 1+k

+ corresponds to a
unique point p = (t, τ) ∈ M1+k, which determines (for k ≥ 2) the switchings of the time-optimal control
bringing the position (t, x) to the position (t + τn, 0) (the optimal control identically vanishes for k = 0 and
has no switchings for k = 1). This fact can be proved similarly to Property 1. Consequently, there exists a
function F−1 : N 1+k

+ → M1+k inverse to F . Performing considerations similar to the proof of Property 2,
we can readily find that q → F−1(q) is a continuous function on N 1+k

+ . Therefore, F is a homeomorphism of
the manifolds M1+k and N 1+k

+ .
Next, F satisfies the relation F (p + δp) = F (p) + dF (p)δp + o(|δp|), where dF (p) = colon(1, 0, . . . , 0) for

k = 0, and

dF (p) =
(

1 0 · · · 0
wn−k(p) wn−k+1(p) · · · wn(p)

)

(17)

for k ≥ 1. Here

wn−k(p) = ∂x(p)/∂t = A(t)x(p) + b(t) + wn−k+1(p) + · · ·+ wn(p),

wi(p) = ∂x(p)/∂τi = 2(−1)i−n+kX (t, t + τi) b (t + τi) , i = n− k + 1, . . . , n− 1,

wn(p) = ∂x(p)/∂τn = (−1)kX (t, t + τn) b (t, t + τn) .

We can show (just as in the proof of Property 3) that for each p ∈ M1+k the vectors wn−k+1(p), . . . ,
wn(p) are linearly independent; therefore, so are the columns of the matrix dF (p). Consequently, dF (p) is an
isomorphism of the space TpM1+k tangent to the manifoldM1+k at the point p onto the space TqN 1+k

+ tangent
to the manifold N 1+k

+ at the point q = F (p). In addition, the function p → dF (p) belongs to the class Cr;
therefore, F is a diffeomorphism of the class Cr+1. Consequently, for each k = 0, 1, . . . , n the manifold N 1+k

+
is a smooth manifold of the class Cr+1.

The above-constructed manifolds N 1+k
+ have the property that the time-optimal control u0(t) is equal

to +1 for t ∈ [t0, t0 + τn−k+1 (t0, x0)), (t0, x0) ∈ N 1+k
+ . The manifolds N 1+k

− , k = 1, . . . , n, can be constructed
in a similar way (in this case the optimal control starts from the value −1).

Remark. We can directly verify that, by virtue of (17), the velocity vector v+ (q0)
.= colon (1, A (t0) x0 +

b (t0)) of the motion t → q(t) = (t, x(t)) [where x(t) is the solution of system (1) passing through the point x0

at time t0 under the control u = +1] lies in the space Tq0N 1+k
+ tangent to the manifold N 1+k

+ at the point q0.
Next, it follows from the above constructions that the manifolds N 1, N 1+k

− , and N 1+k
+ , k = 1, . . . , n, treated

as manifolds embedded in R1+n, have no common points, and the manifold N k
+∪N k

− is the common boundary
of the manifolds clN 1+k

+ and clN 1+k
− .

Theorem 4. Let system (1) be subcritical. Then the extended controllability set D .= R × Dσ(t)(t) can
be represented in the form D = cl

(

N1+n
+ ∪N1+n

−
)

, where N1+k
+ = N 1+k

+ ∪ N k
− ∪ N k−1

+ ∪ · · · ∪ N 1 and N1+k
− =

N 1+k
− ∪N k

+∪N k−1
− ∪ · · ·∪N 1, k = 0, . . . , n. The manifolds N1+k

+ and N1+k
− are weakly invariant, and for each

k = 0, . . . , n the manifold Nk
+ ∪Nk

− is the common boundary of the manifolds cl N1+k
+ and cl N1+k

− .

Proof. To prove the weak invariance of the manifolds N1+k
+ , it suffices to note that for any point q0 =

(t0, x0) ∈ N 1+k
+ there exists a control u(t, q0) (for example, one can always take the time-optimal control as u)

such that the corresponding solution of system (1) with the initial condition x (t0) = x0 passes through the
manifolds N k

−, N k−1
+ , . . . , N 1 (see the remark). The weak invariance of the manifolds N1+k

− can be proved in
a similar way. Next, as was shown above, the manifold N k

+ ∪N k
− is the common boundary of the manifolds
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clN 1+k
+ and clN 1+k

− , k = 1, . . . , n; consequently, for each k = 0, . . . , n the manifold Nk
+ ∪Nk

− is the common
boundary of the manifolds clN1+k

+ and cl N1+k
− .

Let us prove the representation D = cl
(

N1+n
+ ∪N1+n

−
)

. Let q0 ∈ D. Then, by virtue of the definition of D,
there exists a time-optimal control u (t, q0) bringing the motion q (t, q0) = (t, x (t, q0)) to the manifold N 1 in
time ϑ ≤ σ (t0); moreover, the solution x (t, q0) of system (1) has at most n − 1 switchings. Consequently,
q (t, q0) belongs to either clN1+n

+ or cl N1+n
− depending on the position of the point q0, and we have the inclusion

D ⊂ cl
(

N1+n
+ ∪N1+n

−
)

. Conversely, let q0 ∈ clN 1+n
+ . Then there exists a time-optimal control u (t, q0) bringing

q (t, q0) to the manifold N 1 in time ϑ ≤ σ (t0). Performing similar considerations for q0 ∈ clN 1+n
− , we obtain

the inclusion cl
(

N1+n
+ ∪N1+n

−
)

⊂ D, and finally, D = cl
(

N1+n
+ ∪N1+n

−
)

. The proof of the theorem is complete.
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